Let’s Get it Pumpin’

While I was away it seems I had some rain at home. Septic is half full again! Blast! Missed out on seeing how the water is getting in.

nz 125

At least I have a good excuse to play with pumps again! This time to spice things up I thought I’d try and monitor how much water gets pumped out! Yeah! You can see in the above shot how small the pump is I’m using…. Does a good job lifting all that water so far.   I slapped this beast together:

nz 124Crammed in that little box we have a solar lithium battery charger hooked up to a 3.7V 3000mAh Li-ion batter and the biggest solar panel I have laying around….. I forget its watts but know it provides 3.6 on the voltage side of things. This in turn has an Arduino UNO plugged in. Portable powah! Wrangled off that we have a simple cheap water flow meter with a couple of standard poly pipe fittings to attach the hoses to. These can be had from any decent hardware store. It was looking like it may rain thus it all being crammed into the box. The plastic you can see in the box is a precaution to stop any of the circuitry shorting out across the 2 boards.

The pumps in the outlet line and the party is about to start! I had no problem getting the pump primed this time. I dicked around with it a whole lot the last time and got it down pat pretty well. Attach garden hose to output side of hose coming from the pump and push the water flow through backwards until all the air has blown out. Turn pump on and garden hose off and voila! Lots of flow!

nz 123

That pumped happily for a few hours no problems. Just on dark though it started to really rain so I packed the gear up just short of the tank being empty. No probs! I have stats to check off the Arduino! After unpacking it from the box carefully I realized a flaw in my plan….. How was I do get the data out of it? Ha! Foiled! Rebooting the Arduino would wipe said data. OK that’s great Ill just hook it up to USB and turn the serial port viewer on….NO! That auto causes the Arduino to reboot! Luckily the code I used verbatim from Adafruit had a 2×16 LCD hooked up to it that I decided not to bother with. Cool, cool. A bit more time and we were away…

nz 128

 

14.89 Litres?!?!?!?!! What is this black magic! Look at that water flowing in the pic up the page. That’s hundreds of litres over a few hours! Hundreds! I think what happened, and I’m sad to say it but I must of temporarily knocked the power from the little bread board or something. That or there wasn’t enough pressure to spin the water meter. So first attempt = Fail. Second attempt tomorrow shall wield better results. I can monitor it live with the LCD hooked up now.

Here is the code used from Adafruit. You can buy many fantastic things from there so go do it and support a great company /plug over

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/**********************************************************
This is example code for using the Adafruit liquid flow meters. 
 
Tested and works great with the Adafruit plastic and brass meters
    ------> http://www.adafruit.com/products/828
    ------> http://www.adafruit.com/products/833
 
Connect the red wire to +5V, 
the black wire to common ground 
and the yellow sensor wire to pin #2
 
Adafruit invests time and resources providing this open source code, 
please support Adafruit and open-source hardware by purchasing 
products from Adafruit!
 
Written by Limor Fried/Ladyada  for Adafruit Industries.  
BSD license, check license.txt for more information
All text above must be included in any redistribution
**********************************************************/
#include "LiquidCrystal.h"
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
 
// which pin to use for reading the sensor? can use any pin!
#define FLOWSENSORPIN 2
 
// count how many pulses!
volatile uint16_t pulses = 0;
// track the state of the pulse pin
volatile uint8_t lastflowpinstate;
// you can try to keep time of how long it is between pulses
volatile uint32_t lastflowratetimer = 0;
// and use that to calculate a flow rate
volatile float flowrate;
// Interrupt is called once a millisecond, looks for any pulses from the sensor!
SIGNAL(TIMER0_COMPA_vect) {
  uint8_t x = digitalRead(FLOWSENSORPIN);
 
  if (x == lastflowpinstate) {
    lastflowratetimer++;
    return; // nothing changed!
  }
 
  if (x == HIGH) {
    //low to high transition!
    pulses++;
  }
  lastflowpinstate = x;
  flowrate = 1000.0;
  flowrate /= lastflowratetimer;  // in hertz
  lastflowratetimer = 0;
}
 
void useInterrupt(boolean v) {
  if (v) {
    // Timer0 is already used for millis() - we'll just interrupt somewhere
    // in the middle and call the "Compare A" function above
    OCR0A = 0xAF;
    TIMSK0 |= _BV(OCIE0A);
  } else {
    // do not call the interrupt function COMPA anymore
    TIMSK0 &= ~_BV(OCIE0A);
  }
}
 
void setup() {
   Serial.begin(9600);
   Serial.print("Flow sensor test!");
   lcd.begin(16, 2);
 
   pinMode(FLOWSENSORPIN, INPUT);
   digitalWrite(FLOWSENSORPIN, HIGH);
   lastflowpinstate = digitalRead(FLOWSENSORPIN);
   useInterrupt(true);
}
 
void loop()                     // run over and over again
{ 
  lcd.setCursor(0, 0);
  lcd.print("Pulses:"); lcd.print(pulses, DEC);
  lcd.print(" Hz:");
  lcd.print(flowrate);
  //lcd.print(flowrate);
  Serial.print("Freq: "); Serial.println(flowrate);
  Serial.print("Pulses: "); Serial.println(pulses, DEC);
 
  // if a plastic sensor use the following calculation
  // Sensor Frequency (Hz) = 7.5 * Q (Liters/min)
  // Liters = Q * time elapsed (seconds) / 60 (seconds/minute)
  // Liters = (Frequency (Pulses/second) / 7.5) * time elapsed (seconds) / 60
  // Liters = Pulses / (7.5 * 60)
  float liters = pulses;
  liters /= 7.5;
  liters /= 60.0;
 
/*
  // if a brass sensor use the following calculation
  float liters = pulses;
  liters /= 8.1;
  liters -= 6;
  liters /= 60.0;
*/
  Serial.print(liters); Serial.println(" Liters");
  lcd.setCursor(0, 1);
  lcd.print(liters); lcd.print(" Litres        ");
 
  delay(100);
}
Posted in Arduino, Electronics, Fish Pond, Gardening | Tagged , , , , , , , , | Leave a comment

Dark Places

IMG_0795

Extending the test code I built-in yesterdays LED post, I’ve  added a PIR motion sensor and a LDR (light detection) What we now have is when motion is detected AND the light level is below a certain level the LED’s will fade on to full brightness, stay on until motion is no longer detected and then fade down until off. A bit sexier than just on and off 🙂 I plan on setting something like this up using LED strips or the 2W LED’s. Living in an older house means that there’s not as many light switches nor sometimes enough lighting in the first place. Some of the hallways and outside entrances could really benefit from some sexy automatic lighting. I will rig something together temporarily soon(tm) to get the light thresholds correct before designing a nice encased unit.

Below is the code as it currently stands. Feel free to recommend improvements!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#define LEDPin 6 //pin feeding TIP120
#define onboardLED 13 //onboard LED for some debugging
#define motionPin 4  //PIR connection
#define fadeSpeed 10 //Adjust how fast slow you want the fade effect to function
#define lightPin 5 //LDR connection
 
int led;
int motion;
int counter = 0;
int light;
 
void setup() {
//set pinmodes
  pinMode(LEDPin, OUTPUT);
  pinMode(onboardLED, OUTPUT);
  pinMode(motionPin, INPUT);
  pinMode(lightPin, INPUT);
  Serial.begin(9600); //start-up serial for outputting debug info
  int motion = LOW;
  led = 0;
 
}
 
void loop() {
 
  light = analogRead(lightPin); //read light levels
  Serial.print("Light Level: "); 
  Serial.println(light);  //send light levels to serial
  motion = digitalRead(motionPin); //read motion from PIR
 
  Serial.print("Motion: "); 
  Serial.println(motion);  //send motion state to serial
  Serial.println(led);
 
  if((light > 500) && (motion == 1)) { //if motion detected and light level below a certain level, do this
    while (led < 255) { //led below full brightness? 
      led++; //increment fade up to full powahs
      analogWrite(LEDPin, led); //write change to LED control Pin into TIP120
      delay(fadeSpeed); 
      break; //need to try this remarked out when arduino is out of testing location
     }
   }   
  else if((motion == 0) && (led > 0)) { //otherwise if motion not detected and led value is on, fade down
    led--; 
    analogWrite(LEDPin, led);
    delay(fadeSpeed);
 
  }
 
  else {
    // delay(250);
    // Serial.println("delay");
  }
}

Links to some Parts:

2W LEDS – DealExtreme
PIR Sensor
 – Deal Extreme
TIP120 Power Darlington Transistors – Adafruit

Posted in Arduino, Electronics | Tagged , , , , , , | Leave a comment